# Kinetics and Mechanism of (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub> Reaction with OH Radicals in an Environmental Reaction Chamber

# L. Chen,\*,<sup>†</sup> S. Kutsuna,<sup>†</sup> K. Tokuhashi,<sup>†</sup> A. Sekiya,<sup>†</sup> R. Tamai,<sup>‡</sup> and Y. Hibino<sup>‡</sup>

National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, and Chemical Research Center, Central Glass Co., Ltd., 2805 Imafuku-Nakadai Kawagoe, Saitama 350-1151, Japan

Received: January 27, 2005; In Final Form: April 12, 2005

The atmospheric chemistry of  $(CF_3)_2CHOCH_3$ , a possible HCFC/HFC alternative, was studied using a smog chamber/FT-IR technique. OH radicals were prepared by the photolysis of ozone in a 200-Torr  $H_2O/O_3/O_2$  gas mixture held in an 11.5-dm<sup>3</sup> temperature-controlled chamber. The rate constant,  $k_1$ , for the reaction of  $(CF_3)_2CHOCH_3$  with OH radicals was determined to be  $(1.40 \pm 0.28) \times 10^{-12} \exp[(-550 \pm 60)/T]$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup> by means of a relative rate method at 253–328 K. The value of  $k_1$  at 298 K was  $(2.25 \pm 0.04) \times 10^{-13}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>. The random errors are reported with  $\pm 2$  standard deviations, and potential systematic errors of 15% could increase  $k_1$ . In considering OH-radical reactions, we estimated the tropospheric lifetime of  $(CF_3)_2CHOCH_3$  to be 2.0 months using the rate constant at 288 K. The degradation mechanism of  $(CF_3)_2CHOCH_3$  initiated by OH radicals was also investigated using FT-IR spectroscopy at 298 K. Products  $(CF_3)_2CHOC(0)H, CF_3C(0H)_2CF_3, CF_3C(0)OCH_3$ , and  $COF_2$  were identified and quantified. The branching ratio,  $k_{1a}/k_{1b}$ , was estimated to be 2.1:1 for reactions  $(CF_3)_2CHOCH_3 + OH \rightarrow (CF_3)_2CHOCH_2 + H_2O$   $(k_{1a})$  and  $(CF_3)_2CHOCH_3 + OH \rightarrow (CF_3)_2CHOCH_3 + H_2O$   $(k_{1b})$ .

### Introduction

Hydrofluoroethers (HFEs) have been developed to replace hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC).<sup>1</sup> HFEs have stratospheric ozone depletion potentials of zero because they do not contain Cl atoms, and they have been reported to have relatively short atmospheric lifetimes.<sup>1,2</sup> The atmospheric lifetime of one HFE, (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub>, was estimated from theoretical calculations of the rate constant to be 0.25 years, which is very short in comparison to other HFEs.<sup>3</sup>

$$(CF_3)_2 CHOCH_3 + OH \rightarrow products, k_1$$
 (1)

The value of  $k_1$  reported (2.2 × 10<sup>-14</sup> cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup> at 296 K) was estimated on the basis of highest occupied molecular orbital (HOMO) energies.<sup>3</sup> In this study, we determined  $k_1$  by means of a relative rate method at 253–328 K. In addition to the high OH-radical reactivity with (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub>, the degradation mechanism of (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub> initiated by OH radicals was also investigated using FT-IR spectroscopy at 298 K. The branching ratio of  $k_{1a}/k_{1b}$  was estimated for (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub> + OH  $\rightarrow$  (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>2</sub>• + H<sub>2</sub>O ( $k_{1a}$ ) and (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub> + OH  $\rightarrow$  (CF<sub>3</sub>)<sub>2</sub>C+OCH<sub>3</sub> + H<sub>2</sub>O ( $k_{1b}$ ). The observed kinetics and mechanism data are discussed with respect to the atmospheric chemistry of (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub>.

## **Experimental Section**

We obtained the  $(CF_3)_2$ CHOCH<sub>3</sub> sample (99.99% pure) used in this study from Central Glass Co., Ltd. (Japan). All of the experiments were carried out in an 11.5-dm<sup>3</sup> cylindrical quartz chamber (diameter, 10 cm; length, 146 cm) with an external jacket.<sup>4</sup> The temperature in the reaction chamber was controlled by circulating coolant or heated water through the external jacket. A 40-W low-pressure Hg lamp ( $254 \pm 8$  nm) (GL-40, National Co., Japan) was used as the UV light source. Aluminum foil (thickness,  $12 \ \mu$ m) was used to block out 80% of the lamp's light intensity in order to control the reaction rate of (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub> with OH radicals.

OH radicals were generated by the UV photolysis of  $O_3$  in the presence of water vapor in an  $O_3/O_2$  (3%  $O_3$ ) gas mixture at an initial pressure of 200 Torr (reactions 2 and 3)

$$O_3 + hv \rightarrow O(^1D) + O_2 \tag{2}$$

$$O(^{1}D) + H_{2}O \rightarrow 2OH$$
 (3)

The  $O_3/O_2$  (3%  $O_3$ ) gas mixture was generated from pure  $O_2$  with a silent-discharge ozone generator (ECEA-1000, Ebarajitsugyo Ltd., Japan).

A greaseless vacuum line was used in preparing the reaction gas mixtures.  $C_2H_6$  and  $CH_2Cl_2$  were used as reference compounds in this study. Typical initial concentrations (in molecules cm<sup>-3</sup>) were  $1.0 \times 10^{15}$  ((CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub>),  $1.0 \times 10^{15}$ (reference compound), and  $5.6 \times 10^{17}$  (H<sub>2</sub>O) in the O<sub>3</sub>/O<sub>2</sub> (3%) gas mixture at 200 Torr. The sample was continuously circulated by a magnetically driven glass pump at a flow rate of 850 cm<sup>3</sup> min<sup>-1</sup> during UV irradiation in order to mix the sample in the reaction chamber. Concentrations of (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub> and reference compounds were determined with a GC-14A-FID gas chromatograph (Shimadzu, Japan) equipped with a wide-bore capillary column (Rtx-1, 30 m in length, 0.53-mm i.d.). The column oven temperature was set at a constant temperature (293 K). The sample (0.5 cm<sup>3</sup>) was extracted from the reaction chamber and transferred to the GC-FID by the automatic

<sup>\*</sup> To whom correspondence should be addressed. E-mail: l-chen@ aist.go.jp.

<sup>&</sup>lt;sup>†</sup> AIST.

<sup>&</sup>lt;sup>‡</sup> Central Glass Co., Ltd.

sampling system at 6-min intervals. The partial pressure of the reactants decreased by 0.2% with each GC-FID analysis. The uncertainties in the measured concentrations of  $(CF_3)_2CHOCH_3$  and the reference compounds were <2% and were generally in the range of 0.5–1.5%. The reactants decayed up to 95%  $((CF_3)_2CHOCH_3 \text{ and } C_2H_6) \text{ and } 75\% (CH_2Cl_2) \text{ during the 54-min irradiation at 298 K.}$ 

The rate constants for the reaction of  $(CF_3)_2$ CHOCH<sub>3</sub> with OH radicals were measured using a relative rate method. The key step in this method is that of determining the relative disappearance rates of  $(CF_3)_2$ CHOCH<sub>3</sub> and the reference compound  $(C_2H_6 \text{ or CH}_2Cl_2)$  in the presence of OH radicals. Taking into account the decay of the reactants (0.2%) with each GC-FID analysis step, we used eq I to evaluate the rate constant ratio,  $k_1/k_r^{4-6}$ 

$$\ln\left(\frac{[(CF_3)_2CHOCH_3]_0}{[(CF_3)_2CHOCH_3]_t}\right) + D_n = \frac{k_1}{k_r} \left[\ln\left(\frac{[reference]_0}{[reference]_t}\right) + D_n\right]$$
(I)

where  $[(CF_3)_2CHOCH_3]_0$  and  $[reference]_0$  represent the initial concentrations of  $(CF_3)_2CHOCH_3$  and the reference compound and  $[(CF_3)_2CHOCH_3]_t$  and  $[reference]_t$  represent the concentrations of  $(CF_3)_2CHOCH_3$  and the reference compound at reaction time t;  $D_n$  is a parameter that corrects for the nonreactive decay of 0.2% of the reactants because they were removed for GC-FID analysis during the sampling process ( $D_n = n \ln(0.998)$ , where n is the sample number in the GC-FID analysis);<sup>4</sup>  $k_1$  and  $k_r$  are the rate constants for reactions 1 and 4, respectively.

reference + OH 
$$\rightarrow$$
 products,  $k_{\rm r}$  (4)

Photolysis by UV irradiation and reactions with O(<sup>1</sup>D), Cl atom,  $O_3$ , and  $H_2O$  represent the potential losses of  $(CF_3)_2$ -CHOCH<sub>3</sub>, C<sub>2</sub>H<sub>6</sub>, and CH<sub>2</sub>Cl<sub>2</sub> due to non-OH-radical reactions in this reaction system. The direct photolysis of (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub>, C<sub>2</sub>H<sub>6</sub>, and CH<sub>2</sub>Cl<sub>2</sub> was conducted in separate experiments for 5 h, and the decays of (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub>, C<sub>2</sub>H<sub>6</sub>, and CH<sub>2</sub>Cl<sub>2</sub> were lower than the GC-FID analysis uncertainties (2%). Reactions of the reactants with O(1D) are insignificant in this reaction system because of the 10,000-fold excesses of H2O and O2 over the reactants. The rate constants for the reactions of organic compounds with  $O(^{1}D)$  range from  $10^{-10}$  to  $10^{-13}$  cm<sup>3</sup> molecule<sup>-1</sup>  $s^{-1}$ ,  $\bar{7}$  and we assumed the upper limit of the rate constants of the reactions of  $(CF_3)_2$ CHOCH<sub>3</sub>,  $C_2H_6$ , and  $CH_2Cl_2$  with O(<sup>1</sup>D) to be 2  $\times$   $10^{-10}~{\rm cm^3}$  molecule^-1  ${\rm s^{-1}}.$  The reaction rates with  $O(^{1}D)$  were estimated to be  $< 2 \times 10^{5} \text{ s}^{-1}$ , which is more than 4500 times smaller than the reaction rates with H<sub>2</sub>O and O<sub>2</sub>  $(>9 \times 10^8 \text{ s}^{-1})$ . Cl atoms, which would be formed only when using CH<sub>2</sub>Cl<sub>2</sub> as the reference compound, are rapidly scavenged by  $O_3$  at  $10^{16}$ – $10^{17}$  molecules cm<sup>-3</sup>, with a reaction rate constant of  $1.2 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ ,<sup>7</sup> and the reactivity of the resultant ClO with (CF3)2CHOCH3, C2H6, and CH2Cl2 is expected to be low compared to the reactivity with OH radicals because CH<sub>4</sub> reacts with ClO with a rate constant of  $<4.0 \times$  $10^{-18}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>.<sup>7</sup> The dark reactions of (CF<sub>3</sub>)<sub>2</sub>-CHOCH<sub>3</sub>, C<sub>2</sub>H<sub>6</sub>, and CH<sub>2</sub>Cl<sub>2</sub> with either O<sub>3</sub> or H<sub>2</sub>O were also examined for 5 h in this study, and losses of (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub>, C<sub>2</sub>H<sub>6</sub>, and CH<sub>2</sub>Cl<sub>2</sub> were lower than the GC-FID analysis uncertainties (2%).

The mechanisms for the reaction of  $(CF_3)_2$ CHOCH<sub>3</sub> with OH radicals were investigated at 298 K using FT-IR spectroscopy with a nickel-coated aluminum multiple-reflection IR cell (375 cm<sup>3</sup>; optical path length, 3 m), which connected to the circulation line of the 11.5-dm<sup>3</sup> reaction chamber used for the kinetic



Figure 1. Loss of  $(CF_3)_2$ CHOCH<sub>3</sub> versus reference compounds  $C_2H_6$  and  $CH_2Cl_2$  in the presence of OH radicals. Experiments were performed at 298 K in an O<sub>3</sub>/O<sub>2</sub> (3%) gas mixture at 200 Torr.

studies.<sup>4</sup> The experiments were performed at initial concentrations (in molecules cm<sup>-3</sup>) of  $0.5 \times 10^{15}$  ((CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub>) and  $5.6\,\times\,10^{17}$  (H\_2O) in an O\_3/O\_2 (3%) gas mixture at 200 Torr. The loss of (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub> and the formation of products were monitored with an FT-IR spectrometer (JIR-6500, JEOL Ltd., Japan) at a resolution of  $0.5 \text{ cm}^{-1}$ . The sample in the reaction chamber was continuously circulated through the IR cell by a magnetically driven glass pump at a flow rate of 850 cm<sup>3</sup> min<sup>-1</sup> during UV irradiation. Absorption cross sections ( $\epsilon$ ) (cm<sup>2</sup> molecule<sup>-1</sup> (base 10)) of (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub> ( $2.16 \times 10^{-19}$  at 879 cm<sup>-1</sup>), CF<sub>3</sub>C(O)OCH<sub>3</sub> (9.56  $\times$  10<sup>-19</sup> at 1804 cm<sup>-1</sup>), and COF<sub>2</sub>  $(6.3 \times 10^{-19} \text{ at } 1928 \text{ cm}^{-1})$  were calculated from the IR spectra of their He mixtures of known concentration at a total pressure of 200 Torr at 298 K. The  $\epsilon$  values (cm<sup>2</sup> molecule<sup>-1</sup> (base 10)) of CF<sub>3</sub>C(OH)<sub>2</sub>CF<sub>3</sub> (2.76  $\times$  10<sup>-19</sup> at 3632 cm<sup>-1</sup>) were calculated from known concentrations of CF<sub>3</sub>C(O)CF<sub>3</sub>. CF<sub>3</sub>C(OH)<sub>2</sub>CF<sub>3</sub> was prepared by a gas-phase reaction of  $CF_3C(O)CF_3$  with  $H_2O$  (5.6  $\times$  10<sup>17</sup> molecules cm<sup>-3</sup>) in 200 Torr of He at 298 K

$$CF_3C(O)CF_3 + H_2O \rightarrow CF_3C(OH)_2CF_3$$
 (5)

The observed IR spectrum of  $CF_3C(OH)_2CF_3$  is consistent with that reported by Kivinen et al.<sup>8</sup> All of the  $CF_3C(O)CF_3$  was assumed to convert to  $CF_3C(OH)_2CF_3$  in this reaction system because the  $CF_3C(O)CF_3$  peaks at 1809 and 970 cm<sup>-1</sup> disappeared completely. The  $CF_3C(OH)_2CF_3$  sample was shown to be stable in this reaction system. The reagents used were  $C_2H_6$ (99.5% pure, GL Sciences, Inc., Japan),  $CH_2CI_2$  (99% pure, Nacalai Tesque Inc., Kyoto, Japan),  $O_2$  (99.5% pure, Nihon Sanso Corp., Japan),  $CF_3C(O)CF_3$  (97% pure) and  $CF_3C(O)-OCH_3$  (>99% pure, SynQuest Labs, Inc., Alachua, FL), and  $COF_2/N_2$  standard (85% pure, Takachiho Chemical Industry, Co., Japan).

#### **Results and Discussion**

Kinetics of the Reaction of  $(CF_3)_2$ CHOCH<sub>3</sub> with OH Radicals. The rate constants for the reaction of  $(CF_3)_2$ CHOCH<sub>3</sub> with OH radicals at 298 K were derived from the plots of reference compounds  $C_2H_6$  and  $CH_2Cl_2$  (Figure 1). For both reference compounds, the plots of  $\ln([(CF_3)_2CHOCH_3]_0/[(CF_3)_2 CHOCH_3]_t) + D_n$  versus  $\ln([reference]_0/[reference]_t) + D_n$  gave straight lines with slopes  $k_1/k_r$  that intersected the origin. Linear least-squares analysis of the data (Figure 1) gave  $k_1/k_r = 0.940$  $\pm 0.034$  for  $C_2H_6$  and  $k_1/k_r = 2.23 \pm 0.13$  for CH<sub>2</sub>Cl<sub>2</sub> after 5–7 runs. The errors reported are  $\pm 2$  standard deviations and

TABLE 1: Measured Values of  $k_1/k_r$  and  $k_1$  over the Temperature Range 253–328 K

| $k/k_r^a$ |                               |                                 | $10^{13} \times k_1{}^{a,b}$ , cm <sup>3</sup> molecule <sup>-1</sup> s <sup>-1</sup> |                 |
|-----------|-------------------------------|---------------------------------|---------------------------------------------------------------------------------------|-----------------|
| T (K)     | C <sub>2</sub> H <sub>6</sub> | CH <sub>2</sub> Cl <sub>2</sub> | $C_2H_6$                                                                              | $CH_2Cl_2$      |
| 253       | $1.32\pm0.13$                 | $2.69\pm0.23$                   | $1.68\pm0.16$                                                                         | $1.64\pm0.14$   |
| 268       | $1.10\pm0.06$                 | $2.40\pm0.17$                   | $1.77\pm0.10$                                                                         | $1.77 \pm 0.13$ |
| 283       | $1.02\pm0.03$                 | $2.40\pm0.08$                   | $2.02\pm0.06$                                                                         | $2.11\pm0.07$   |
| 298       | $0.940\pm0.034$               | $2.23\pm0.13$                   | $2.26\pm0.08$                                                                         | $2.30\pm0.13$   |
| 313       | $0.825\pm0.013$               | $2.09\pm0.03$                   | $2.35\pm0.04$                                                                         | $2.47\pm0.04$   |
| 328       | $0.786 \pm 0.058$             | $2.07\pm0.05$                   | $2.62\pm0.19$                                                                         | $2.77\pm0.07$   |

<sup>*a*</sup> Values shown are  $\pm 2$  standard deviations. <sup>*b*</sup> Rate constants of *k* (C<sub>6</sub>H<sub>6</sub>) = 8.7 × 10<sup>-12</sup> exp(-1070/*T*) and *k* (CH<sub>2</sub>Cl<sub>2</sub>) = 1.9 × 10<sup>-12</sup> exp(-870/*T*) cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1.7</sup>



**Figure 2.** Arrhenius plot of kinetics data obtained by a relative rate method for the reaction of  $(CF_3)_2CHOCH_3$  with OH radicals at 253–328 K.

represent precision only. Using eq I,  $k_{298K}(C_2H_6) = 2.4 \times 10^{-13}$ (±10%) cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup> and  $k_{298K}(CH_2Cl_2) = 1.0 \times 10^{-13}$ (±15%) cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>,<sup>7</sup> the  $k_1(298 \text{ K})$  values were estimated to be (2.26 ± 0.08) × 10<sup>-13</sup> cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup> (C<sub>2</sub>H<sub>6</sub> reference) and (2.30 ± 0.13) × 10<sup>-13</sup> cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup> (C<sub>4</sub>H<sub>2</sub>-Cl<sub>2</sub> reference). The random errors are reported with ±2 standard deviations. Systematic uncertainty may also add an additional 15% to the  $k_1$  value. The  $k_1(298 \text{ K})$  values obtained from the two reference compounds were the same within experimental uncertainty.

The  $k_1/k_r$  ratios were determined with C<sub>2</sub>H<sub>6</sub> and CH<sub>2</sub>Cl<sub>2</sub> as reference compounds over the temperature range 253-328 K. The plots of  $\ln([(CF_3)_2CHOCH_3]_0/[(CF_3)_2CHOCH_3]_t) + D_n$ versus  $\ln([reference]_0/[reference]_t) + D_n$  (not shown) were similar to those in Figure 1. The  $k_1$  values determined from the measured  $k_1/k_r$  ratios and the rate constants of C<sub>2</sub>H<sub>6</sub> and CH<sub>2</sub>- $Cl_2$  are listed in Table 1.<sup>7</sup> The Arrhenius plots obtained for  $k_1$ are shown in Figure 2. The Arrhenius expression of  $k_1 = (1.40)$  $\pm 0.28$ ) × 10<sup>-12</sup> exp[(-550  $\pm 60$ )/T] was derived from nonlinear least-squares analyses of the plots in Figure 2. The value of  $k_1 = (2.25 \pm 0.04) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$  at 298 K was obtained from the Arrhenius rate parameters of  $k_1$ . The theoretically calculated value of  $k_1$  (2.2 × 10<sup>-13</sup> cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>) at 296 K is consistent with our measurements.<sup>3</sup> We compared the data of  $k_1$  to the rate constants of CF<sub>3</sub>CH<sub>2</sub>- $OCH_3$  and  $CHF_2OCH_3$ . The value of  $k_1$  is lower than that of  $CF_3CH_2OCH_3$  ((5.7 ± 0.8) × 10<sup>-13</sup> cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>)<sup>9</sup> and higher than that of CHF<sub>2</sub>OCH<sub>3</sub> (3.5  $\times$  10<sup>-14</sup> cm<sup>3</sup> molecule<sup>-1</sup>  $(s^{-1})^7$  at 298 K. According to the substituent factors reported by Kwok et al.,10 the same value of the substituent factors of  $-OCH_2CF_3$  (0.44) and  $-OCH(CF_3)_2$  (0.44) shows that the -OCH<sub>3</sub> group in both CF<sub>3</sub>CH<sub>2</sub>OCH<sub>3</sub> and (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub> have similar reactivities. The group rate constants of  $-CH_2-(0.934 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$ ,  $-CH < (1.94 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$ , and the substituent factor of  $-CF_3(0.071)$  show that the reactivity of  $-CH_2-$  in CF<sub>3</sub>CH<sub>2</sub>OCH<sub>3</sub> is higher than that of  $-CH < \text{ in } (CF_3)_2$ CHOCH<sub>3</sub>. These facts imply that a value of  $k_1$  lower than that of CF<sub>3</sub>CH<sub>2</sub>OCH<sub>3</sub> is reasonable. The values of  $-OHF_2(0.17)$  and  $-OCH(CF_3)_2(0.44)$  show that the  $-OCH_3$  group in (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub> is higher than that in CHF<sub>2</sub>OCH<sub>3</sub>. This fact shows that a value of  $k_1$  higher than that of CHF<sub>2</sub>OCH<sub>3</sub> is reasonable. The values of A ((1.40  $\pm$  0.28)  $\times$  10<sup>-12</sup> cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>) for  $k_1$  shows a slightly lower value comparable with those reported for other HFEs, such as CH<sub>3</sub>OCF<sub>3</sub>,<sup>7</sup> CH<sub>3</sub>-OCF<sub>2</sub>CF<sub>3</sub>, and CH<sub>3</sub>OCF(CF<sub>3</sub>)<sub>2</sub>,<sup>11</sup> because there are four H atoms in (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub>. It might be caused from the narrow measurement temperature range of this study.

By using  $\tau = (k_1(288 \text{ K}) \times [\text{OH}])^{-1}$ , we obtained an atmospheric lifetime ( $\tau$ ) of 2.0 months for (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub> with respect to reaction with OH radicals, considering a global mean value for the OH radicals concentration (9.4 × 10<sup>5</sup> cm<sup>-3</sup>)<sup>12</sup> and the  $k_1(288 \text{ K})$  value of 2.07 × 10<sup>-13</sup> cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup> calculated from the Arrhenius expression of  $k_1$ .

Mechanism of the Reaction of (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub> with OH Radicals. (a) Identified and Quantified Products. The infrared spectra of the  $(CF_3)_2CHOCH_3 - O_3 - H_2O - O_2$  gas mixture before irradiation and after 24 min of irradiation are shown (Figure 3A,B). The standard IR spectra of CF<sub>3</sub>C(OH)<sub>2</sub>CF<sub>3</sub>, CF<sub>3</sub>C(O)-OCH<sub>3</sub>, CF<sub>3</sub>C(O)CF<sub>3</sub>, and COF<sub>2</sub> are also shown (Figure 3C-F). Compared with the standard IR spectra (Figure 3C-F), the IR bands at 3632, 1804, and 1928  $cm^{-1}$  (Figure 3B) were considered to belong to CF<sub>3</sub>C(OH)<sub>2</sub>CF<sub>3</sub>, CF<sub>3</sub>C(O)OCH<sub>3</sub>, and COF<sub>2</sub>, respectively. Therefore, CF<sub>3</sub>C(OH)<sub>2</sub>CF<sub>3</sub>, CF<sub>3</sub>C(O)OCH<sub>3</sub>, and COF<sub>2</sub> were formed from the UV irradiation of a gas mixture of (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub>-O<sub>3</sub>-H<sub>2</sub>O-O<sub>2</sub>. CF<sub>3</sub>C(OH)<sub>2</sub>CF<sub>3</sub> was presumably formed from CF<sub>3</sub>C(O)CF<sub>3</sub> as in reaction 5, and there must be some CF<sub>3</sub>C(O)CF<sub>3</sub> present up through at least 80 min of irradiation time. However, the IR band at 970 cm<sup>-1</sup> of CF<sub>3</sub>C-(O)CF<sub>3</sub> (Figure 3E) was not observed during UV irradiation (Figure 3B,I). The presence of  $CF_3C(O)CF_3$  was negligible in this study. It is possible that the hydrolysis rate of  $CF_3C(O)$ - $CF_3$  (reaction 5) was significantly higher than the generation rate of  $CF_3C(O)CF_3$  in this reaction system. We did not determine CO<sub>2</sub> in this study. There are three unknown IR bands at 1778, 1386, and 1362 cm<sup>-1</sup> (Figure 3B,H,I). The IR band at 1778  $cm^{-1}$  indicated the presence of a C=O group, but we assumed that the possible product was  $(CF_3)_2CHOC(O)H$ , which could be produced by a (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>2</sub>• radical with O<sub>2</sub>, as in reactions 6-8

$$(CF_3)_2 CHOCH_2^{\bullet} + O_2 + M \rightarrow (CF_3)_2 CHOCH_2O_2^{\bullet} + M$$
(6)

$$2(CF_3)_2 CHOCH_2 O_2^{\bullet} \rightarrow 2(CF_3)_2 CHOCH_2 O^{\bullet} + O_2 \quad (7)$$

$$(CF_3)_2 CHOCH_2 O^{\bullet} + O_2 \rightarrow (CF_3)_2 CHOC(O)H + HO_2 \quad (8)$$

The IR spectrum of  $(CF_3)_2$ CHOC(O)H was calculated by means of DFT (at the B3LYP/6-31G(d) level using Gaussian 98; Figure 3G).<sup>13</sup> The calculated wavenumber was scaled by a factor of 0.9613.<sup>14</sup> The calculated absorptions at 1776, 1370, and 1336 cm<sup>-1</sup> were consistent with the observed unknown IR bands (Figure 3B,G,H,I), and we determined that  $(CF_3)_2$ CHOC-(O)H was produced from the reaction of  $(CF_3)_2$ CHOCH<sub>3</sub> with OH radicals.



**Figure 3.** IR spectra observed before (A) and after (B) a 24-min irradiation of a gas mixture of  $(CF_3)_2CHOCH_3$  ( $0.5 \times 10^{15}$  molecules cm<sup>-3</sup>), H<sub>2</sub>O ( $5.6 \times 10^{17}$  molecules cm<sup>-3</sup>), and O<sub>3</sub>/O<sub>2</sub> (3%) at 298 K and 200 Torr. Reference spectra of (C) CF<sub>3</sub>C(OH)<sub>2</sub>CF<sub>3</sub>, (D) CF<sub>3</sub>C(O)OCH<sub>3</sub>, (E) CF<sub>3</sub>C-(O)CF<sub>3</sub>, and (F) COF<sub>2</sub>. (G) Spectrum of (CF<sub>3</sub>)<sub>2</sub>CHOC(O)H calculated by DFT (at the B3LYP/6-31G(d) level), (H) 1700-2000 cm<sup>-1</sup> region spectrum of B, (I) 950-1400 cm<sup>-1</sup> region spectrum of B.

The concentrations of CF<sub>3</sub>C(OH)<sub>2</sub>CF<sub>3</sub>, CF<sub>3</sub>C(O)OCH<sub>3</sub>, and COF<sub>2</sub> were calculated by their IR absorption cross sections ( $\epsilon$ ). Because CF<sub>3</sub>C(O)CF<sub>3</sub> was not observed during UV irradiation, (CF<sub>3</sub>)<sub>2</sub>CHOC(O)H, CF<sub>3</sub>C(OH)<sub>2</sub>CF<sub>3</sub>, CF<sub>3</sub>C(O)OCH<sub>3</sub>, and COF<sub>2</sub> were the only products that contained both carbon and fluorine. However, both CF<sub>3</sub>C(O)OCH<sub>3</sub> and COF<sub>2</sub> were formed in a single reaction event, and CF<sub>3</sub>C(O)OCH<sub>3</sub> underwent a subsequent reaction, whereas COF<sub>2</sub> was relatively stable in this reaction system. Therefore, we determined the  $\epsilon$  value for (CF<sub>3</sub>)<sub>2</sub>-CHOC(O)H to be (3.1 ± 0.9) × 10<sup>-18</sup> cm<sup>2</sup> molecule<sup>-1</sup> (base 10) at 1778 cm<sup>-1</sup> from the material balance eq II from four experiments

$$[(CF_{3})_{2}CHOC(O)H]_{t} = \Delta[(CF_{3})_{2}CHOCH_{3}]_{t} - ([CF_{3}C(OH)_{2}CF_{3}]_{t} - [COF_{2}]_{t}) (II)$$

where

$$\Delta[(CF_3)_2CHOCH_3]_t = ([(CF_3)_2CHOCH_3]_0 - [(CF_3)_2CHOCH_3]_t)$$

Although a blank experiment indicated that the concentrations of  $COF_2$  were reduced by photolysis and wall reactions in this system, losses of  $COF_2$  were <2% in the initial 18-min period. Therefore, calculation of  $\epsilon$  values for  $(CF_3)_2CHOC(O)H$  from the data during the initial 18-min period was not affected by these losses.

(b) Mechanism of the OH Radical-Initiated Oxidation of  $(CF_3)_2CHOCH_3$ . The concentration—radiation time profiles for the concentrations of  $(CF_3)_2CHOCH_3$ ,  $(CF_3)_2CHOC(O)H$ ,  $CF_3C(OH)_2CF_3$ ,  $CF_3C(O)OCH_3$ , and  $COF_2$  are shown in Figure 4. The concentration—radiation time behavior shows that  $(CF_3)_2$ -CHOC(O)H,  $CF_3C(O)OCH_3$ , and  $COF_2$  are the primary products and that  $CF_3C(OH)_2CF_3$  is a secondary product. A mechanism



**Figure 4.** Concentration–radiation time profiles for  $(CF_3)_2CHOCH_3$ (**■**),  $(CF_3)_2CHOC(O)H$  ( $\bigcirc$ ),  $CF_3C(OH)_2CF_3$  ( $\bigtriangledown$ ),  $CF_3C(O)OCH_3$  ( $\triangle$ ), and  $COF_2$  ( $\diamondsuit$ ); data were obtained from the experiment described in Figure 3.

(Figure 5) is proposed for the reaction of  $(CF_3)_2CHOCH_3$  with OH radicals.

The formation mechanisms of  $(CF_3)_2CHOC(O)H$  and  $CF_3C-(OH)_2CF_3$  from the  $(CF_3)_2CHOCH_2^{\bullet}$  radical are shown in Figure 5A. The peroxyl radical of  $(CF_3)_2CHOCH_2O_2^{\bullet}$  formed in reaction 6 can then react with the RO<sub>2</sub> radical (R =  $(CF_3)_2-CHOCH_2$ ,  $(CF_3)_2COCH_3$ ) and HO<sub>2</sub> (reactions 7–9a).

However, the (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>2</sub>OOH theoretically formed in reaction 9b could not be determined unequivocally in this study.

$$(CF_3)_2CHOCH_2O_2^{\bullet} + HO_2 \rightarrow (CF_3)_2CHOCH_2OOH + O_2$$
(9b)

The IR band at 3628 cm<sup>-1</sup> was of an ROOH-type molecule,<sup>15</sup> and it overlapped the 3632 cm<sup>-1</sup> band of CF<sub>3</sub>C(OH)<sub>2</sub>CF<sub>3</sub>.



**Figure 5.** Degradation mechanism of (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub> initiated by OH radicals at 298 K.

Hydroperoxides are generally very reactive toward OH radicals,  $k(OH + CH_3OOH) = 7.4 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K},^7$  although the presence of fluorine in  $(CF_3)_2CHOCH_2OOH$  would be expected to reduce their reactivity. Even if  $(CF_3)_2$ -CHOCH<sub>2</sub>OOH was formed in this study, it would react with OH radicals to regenerate the  $(CF_3)_2CHOCH_2O_2^{\bullet}$  radical in the chamber, as in reaction 10.

$$(CF_3)_2 CHOCH_2OOH + OH \rightarrow (CF_3)_2 CHOCH_2O_2^{\bullet} + H_2O$$
(10)

The  $(CF_3)_2CHOCH_2O^{\bullet}$  radical produced in reaction 7 can undergo a reaction with  $O_2$  in reaction 8 (Figure 5A) or unimolecular dissociation as in reaction 11.

$$(CF_3)_2 CHOCH_2 O^{\bullet} + M \rightarrow (CF_3)_2 CHO^{\bullet} + HC(O)H + M$$
(11)

However, the HC(O)H that formed theoretically in reaction 11 was not observed in this reaction system. It is possible that the unimolecular dissociation of reaction 11 was negligible in this reaction system. HC(O)H might also be removed by reaction with OH radicals because HC(O)H reacts with OH radicals with high reactivities,  $k(OH + HC(O)H) = 9.0 \times 10^{-12}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup> at 298 K.<sup>7</sup> Previous studies reported that the reaction with O<sub>2</sub> dominates the unimolecular dissociation for  $C_nF_{2n+1}OCH_2O^{\bullet}$  radicals (n = 1-4).<sup>16–18</sup> Considering the high concentration of O<sub>2</sub> (6.29 × 10<sup>18</sup> molecules cm<sup>-3</sup>) in the chamber, we assumed that (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>2</sub>O<sup>•</sup> with O<sub>2</sub> (reaction 8) would dominate the unimolecular dissociation (reaction 11) in this reaction system.

The (CF<sub>3</sub>)<sub>2</sub>CHOC(O)H produced in reactions 8 and 9a can react with OH radicals and produce  $CF_3C(OH)_2CF_3$ , as in reactions 12–14 (Figure 5A).



**Figure 6.** Plots of the concentrations of the products observed against the concentration of  $(CF_3)CF_2CHOCH_3$  reacted.  $(CF_3)_2CHOC(O)H (\diamondsuit)$ ,  $CF_3C(OH)_2CF_3 (\bigtriangleup)$ ,  $CF_3C(O)OCH_3 (\bigcirc)$ , and  $COF_2 (\Box)$ ; data were obtained from the experiment described in Figure 3.

The formation mechanism of CF<sub>3</sub>C(O)CH<sub>3</sub> and COF<sub>2</sub> from the (CF<sub>3</sub>)<sub>2</sub>C•OCH<sub>3</sub> radical is the same as that in reactions 1b and 15–17 (Figure 5B). The peroxyl radical of (CF<sub>3</sub>)<sub>2</sub>CO<sub>2</sub>•-OCH<sub>3</sub> formed in reaction 15 can react with RO<sub>2</sub> (R = (CF<sub>3</sub>)<sub>2</sub>-CHOCH<sub>2</sub>, (CF<sub>3</sub>)<sub>2</sub>COCH<sub>3</sub>), as in reactions 16 and 17. The CF<sub>3</sub>• radical formed in reaction 17 can produce COF<sub>2</sub> via a series of steps, as in reactions 18–22.<sup>19–21</sup>

$$CF_3^{\bullet} + O_2 + M \rightarrow CF_3O_2^{\bullet} + M$$
 (18)

$$2CF_3O_2^{\bullet} \rightarrow 2CF_3O^{\bullet} + O_2 \tag{19}$$

$$CF_3O^{\bullet} + HO_2 \rightarrow CF_3OH + O_2$$
 (20)

$$CF_3O^{\bullet} + RH \rightarrow CF_3OH + R$$
 (21)

$$CF_3OH + wall \rightarrow COF_2 + HF + wall$$
 (22)

Because decay of CF<sub>3</sub>C(O)OCH<sub>3</sub> was observed in this study, reaction of CF<sub>3</sub>C(O)OCH<sub>3</sub> with OH radicals was considered to occur in this reaction system, as in reactions 23-27 (Figure 5B). The unimolecular dissociation of CF<sub>3</sub>C(O)OCH<sub>2</sub>O• might occur in this reaction system as in reaction 27. The CF<sub>3</sub>• radical formed in reaction 27 can produce COF<sub>2</sub> in a series of steps (reactions 18-22).

$$CF_3C(O)OCH_2O^{\bullet} \rightarrow CF_3^{\bullet} + CO_2 + HC(O)H$$
 (27)

However, the concentration of  $COF_2$  did not increase with the decay of  $CF_3C(O)OCH_3$  after a radiation time of 40 min, and the reaction of  $CF_3C(O)OCH_2O^{\bullet}$  with  $O_2$  (reaction 26) was considered to dominate the unimolecular dissociation (reaction 27) in this reaction system. However, we failed to observe the formation of  $CF_3C(O)OC(O)H$ .

Figure 6 shows the concentrations of the products observed against the concentration of  $(CF_3)CF_2CHOCH_3$  reacted. The initial formation yields of  $\alpha((CF_3)_2CHOC(O)H)$ ,  $\alpha(CF_3C(OH)_2-CF_3)$ ,  $\alpha(CF_3C(O)OCH_3)$ , and  $\alpha(COF_2)$  were obtained from the slopes of these plots at the first stage in Figure 6 for  $(CF_3)_2-CHOC(O)H$ ,  $CF_3C(OH)_2CF_3$ ,  $CF_3C(O)OCH_3$ , and  $COF_2$ , respectively. The values of  $\alpha((CF_3)_2CHOC(O)H)$ ,  $\alpha(CF_3C(OH)_2-CF_3)$ ,  $\alpha(CF_3C(O)OCH_3)$ , and  $\alpha(COF_2)$  were obtained to be (0.66  $\pm$  0.11), (0.04  $\pm$  0.05), (0.22  $\pm$  0.02), and (0.33  $\pm$  0.02), respectively, from four experiments. According to the reaction

mechanism shown in Figure 5, it is clear that  $(CF_3)_2CHOC-(O)H$  and  $CF_3C(OH)_2CF_3$  were produced from  $(CF_3)_2CHOCH_2^{\bullet}$  radicals and that  $CF_3C(O)OCH_3$  and  $COF_2$  were produced from  $(CF_3)_2C^{\bullet}OCH_3$  radicals. However,  $CF_3C(O)OCH_3$  underwent a subsequent reaction 23, whereas  $COF_2$  was relative stable in this reaction system. Therefore, values  $k_{1a}/k_1$  and  $k_{1b}/k_1$  for  $(CF_3)_2CHOCH_2^{\bullet}$  and  $(CF_3)_2C^{\bullet}OCH_3$  radicals could be calculated from the data of  $\alpha((CF_3)_2CHOC(O)H)$ ,  $\alpha(CF_3C(OH)_2CF_3)$ , and  $\alpha(COF_2)$  using equations III and IV

$$k_{1a}/k_1 = \alpha((CF_3)_2 CHOC(O)H) + \alpha(CF_3C(OH)_2 CF_3) \quad (III)$$

$$k_{1b}/k_1 = \alpha(\text{COF}_2) \tag{IV}$$

The values of  $k_{1a}/k_1$  and  $k_{1b}/k_1$  were obtained to be 0.70  $\pm$  0.11 and 0.33  $\pm$  0.02, respectively. The branching ratio of  $k_{1a}/k_{1b}$ was 2.1:1, and there are three H atoms in the  $-CH_3$  group ( $k_{1a}$ ), therefore, the central H atoms have reactivities 1.4 times as high as the terminal H atoms in OH-radical H-atom abstraction reactions. The value of  $k_{1a}$  at 298 K was estimated to be 1.5  $\times$  $10^{-13}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>, from  $k_{1a}/k_{1b}$  and  $k_1$  at 298 K. The  $-CH_3$  group in (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub> has a reactivity 10 times as high as that in (CF<sub>3</sub>)<sub>2</sub>CFOCH<sub>3</sub> (1.52  $\times$  10<sup>-13</sup> cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>).<sup>11</sup> The changes for CH<sub>3</sub>CHF<sub>2</sub> (3.4  $\times$  10<sup>-14</sup> cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>)<sup>7</sup> to CH<sub>3</sub>CF<sub>3</sub> (1.3  $\times$  10<sup>-15</sup> cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>)<sup>7</sup> and CH<sub>2</sub>-FCH<sub>2</sub>F (9.7  $\times$  10<sup>-14</sup> cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>)<sup>7</sup> to CH<sub>2</sub>FCHF<sub>2</sub> (1.7  $\times$  10<sup>-14</sup> cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>)<sup>7</sup> show a similar tendency when an H atom is replaced by an F atom.

Atmospheric Implications. The rate constant of the reaction of (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub> with OH radicals is  $k_1(T) = (1.40 \pm 0.28)$ ×  $10^{-12} \exp[(-550 \pm 60)/T]$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>, and the atmospheric lifetime is estimated to be 2.0 months using the rate constant at 288 K. (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>3</sub> is expected to have less impact on global warming because it is more rapidly removed from the atmosphere than HCFCs and HFCs.<sup>2,7</sup>

In the atmosphere, the reaction of  $(CF_3)_2CHOCH_3$  with OH radicals will produce  $(CF_3)_2CHOCH_2^{\bullet}$  and  $(CF_3)_2C^{\bullet}OCH_3$ radicals with a branching ratio of 2.1:1 at 298 K. The  $(CF_3)_2$ -CHOCH<sub>2</sub>• and (CF<sub>3</sub>)<sub>2</sub>C•OCH<sub>3</sub> radicals formed can rapidly react with  $O_2$  to produce the peroxyl radicals,  $(CF_3)_2CHOCH_2O_2^{\bullet}$  and (CF<sub>3</sub>)<sub>2</sub>CO<sub>2</sub>•OCH<sub>3</sub>. These peroxyl radicals will react with HO<sub>2</sub>, NO<sub>2</sub>, NO, and other peroxyl radicals. It is not obvious that the reactions of the peroxy radicals, (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>2</sub>O<sub>2</sub>• and (CF<sub>3</sub>)<sub>2</sub>- $CO_2$  OCH<sub>3</sub>, with HO<sub>2</sub> lead to (CF<sub>3</sub>)<sub>2</sub>CHOC(O)H and CF<sub>3</sub>C(O)-OCH<sub>3</sub>, respectively, in the present work. In the atmosphere, it is possible that  $(CF_3)_2CHOC(O)H$  and  $CF_3C(O)OCH_3$  are produced from (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>2</sub>O<sub>2</sub>• and (CF<sub>3</sub>)<sub>2</sub>CO<sub>2</sub>•OCH<sub>3</sub> radical reaction with HO<sub>2</sub>. (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>2</sub>O<sub>2</sub>NO<sub>2</sub> and (CF<sub>3</sub>)<sub>2</sub>C(O<sub>2</sub>NO<sub>2</sub>)-OCH<sub>3</sub>, formed from the reactions of (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>2</sub>O<sub>2</sub>• and (CF<sub>3</sub>)<sub>2</sub>CO<sub>2</sub>•OCH<sub>3</sub> with NO<sub>2</sub>, decompose to (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>2</sub>O<sub>2</sub>•,  $(CF_3)_2CO_2$  OCH<sub>3</sub>, and NO<sub>2</sub> due to their thermal instability. Reactions of (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>2</sub>O<sub>2</sub>• and (CF<sub>3</sub>)<sub>2</sub>CO<sub>2</sub>•OCH<sub>3</sub> with NO produce (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>2</sub>O<sup>•</sup> and (CF<sub>3</sub>)<sub>2</sub>CO<sup>•</sup>OCH<sub>3</sub> radicals. The fate of (CF<sub>3</sub>)<sub>2</sub>CHOCH<sub>2</sub>O• and (CF<sub>3</sub>)<sub>2</sub>CO•OCH<sub>3</sub> radicals is shown in this study to form (CF<sub>3</sub>)<sub>2</sub>CHOC(O)H and CF<sub>3</sub>C(O)OCH<sub>3</sub> by reaction with O<sub>2</sub> and decomposition, respectively. OH radicals also oxidize  $(CF_3)_2$ CHOC(O)H in the atmosphere. In this study, the OH-radical oxidation of (CF<sub>3</sub>)<sub>2</sub>CHOC(O)H is observed to

produce  $CF_3C(O)CF_3$ .  $CF_3C(O)CF_3$  is then likely to form  $CF_3C(OH)_2CF_3$  by reaction with  $H_2O$  in atmospheric conditions. However, because the atmospheric chemistry of  $CF_3C(OH)_2$ - $CF_3$  is not yet known, further investigation of  $CF_3C(OH)_2CF_3$  is required.  $CF_3C(O)OCH_3$  can be oxidized by OH radicals in the atmosphere, with the final products likely to include  $COF_2$ .  $CF_3C(O)OCH_3$  may also be removed from the atmosphere by dissolution into the ocean.<sup>22</sup>

Acknowledgment. We thank the Central Glass Co., Ltd. for a grant and a  $(CF_3)_2CHOCH_3$  sample which made this collaborative research project possible.

#### **References and Notes**

(1) Sekiya, A.; Misaki, S. CHEMTECH 1996, 26, 44.

(2) Houghton, J. T.; Ding Y.; Griggs, D. J.; Noguer, M.; van der Linden, P. J.; Dai, X.; Maskell, K.; Johnson, C. A. *Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change*; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2001.

(3) Imasu, R.; Suga, A.; Matsuno, T. J. Meteorol. Soc. Jpn. 1995, 73, 1123.

(4) Chen, L.; Kutsuna, S.; Tokuhashi, K.; Sekiya, A. Int. J. Chem. Kinet. 2003, 35, 317.

(5) Atkinson, R. Chem. Rev. 1986, 86, 69.

(6) Finlayson-Pitts, B. J.; Hernandez, S. K.; Berko, H. N. J. Phys. Chem. 1993, 97, 1172.

(7) Sander, S. P.; Friedl, R. R.; Golden, D. M.; Kurylo, M. J.; Huie, R. E.; Orkin, V. L.; Moortgat, G. K.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J.; Finlayson-Pitts, B. J. *Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies*; Evaluation no. 14, JPL Publication 02-25; Jet Propulsion Laboratory: Pasadena, CA, 2003.

(8) Murto, J.; Kivinen, A.; Manninen, A.; Perttila, M. Spectrochim. Acta 1975, 31A, 217.

(9) Oyaro, N.; Sellevåg, S. R.; Nielsen, C. J. J. Phys. Chem. A 2005, 109, 337.

(10) Kwok, E. S. C.; Atkinson, R. Atmos. Environ. 1995, 29, 1685.

(11) Tokuhashi, K.; Takahashi, A.; Kaise, M.; Kondo, S.; Sekiya, A.;

Yamashita, S.; Ito, H. Int. J. Chem. Kinet. 1999, 31, 846.

(12) Prinn, R. G.; Huang, J.; Weiss, R. F.; Cunnold, D. M.; Fraser, P. J.; Simmonds, P. G.; McCulloch, A.; Harth, C.; Salameh, P.; O'Doherty, S.; Wang, R. H. J.; Porter, L.; Miller, B. R. *Science* **2001**, *292*, 1882.

(13) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick,
D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,
I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M.
W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon,
M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*, revision A.7; Gaussian,
Inc.: Pittsburgh, PA, 1998.

(14) Wong, M. W. Chem. Phys. Lett. 1996, 256, 391.

(15) Chen, J.; Young, V.; Niki, H.; Magid, H. J. Phys. Chem. A 1997, 101, 2648.

(16) Christensen, L. K.; Wallington, T. J.; Guschin, A.; Hurley, M. D. J. Phys. Chem. A **1999**, 103, 4202.

(17) Nohara, K.; Toma, M.; Kutsuna, S.; Takeuchi, K.; Ibusuki, T. *Environ. Sci. Technol.* **2001**, *35*, 114.

(18) Chen, L.; Kutsuna, S.; Nohara, K.; Takeuchi, K.; Ibusuki, T. J. Phys. Chem. A **2001**, 105, 10854.

(19) Sehested, J.; Wallington, T. J. Environ. Sci. Technol. 1993, 27, 146.

(20) Wallington, T. J.; Schneider, W. F. Environ. Sci. Technol. 1994, 28, 1198.

(21) Turnipseed, A. A.; Barone, S. B.; Jensen, N. R.; Hanson, D. R.; Howard, C. J.; Ravishankara, A. R. J. Phys. Chem. **1995**, 99, 6000.

(22) Kutsuna, S.; Chen, L.; Ohno, K.; Tokuhashi, K.; Sekiya, A. Atmos. Environ. 2004, 38, 725.